
Communication Supportfor AdaptiveComputation�Ali P�nary and Bruce Hendricksonz1 IntroductionIn this work we address two problems associated with redistributing data amongstprocessors. The �rst problem is that of determining the inter{processor communi-cation pattern necessary to perform a calculation like matrix{vector multiplication.Consider the situation when a calculation is �rst described or when it is reparti-tioned after dynamic load balancing. Processors do not know what communicationoperations to perform to enable the matrix{vector multiplication to proceed. As-suming the matrix is partitioned by rows, looking at its own domain allows eachprocessor can determine what it wants to receive, but it does not know which pro-cessor owns these desired data. We propose a distributed directory algorithm toe�ciently determine the communication pattern (i.e., what a processor needs toreceive from and send to every other processor). Our experiments show that theproposed algorithm performs e�ciently on large numbers of processors.The second problem is that of actually migrating data in the case of limitedmemory. Although a number of algorithms and software tools have been developedto repartition the work amongst processors, the mechanics of actually moving largeamounts of data has received much less attention. If su�cient memory is available,each processor can allocate space for its incoming data, post asynchronous receives,and then send its outgoing data. Memory for outgoing data can be deallocated only�This work was funded by the Applied Mathematical Sciences program, U.S. Department ofEnergy, O�ce of Energy Research and performed at Sandia, a multiprogram laboratory operatedby Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE under contract numberDE-AC-94AL85000.yDepartment of Computer Science, University of Illinois, Urbana, IL 61801{2589, e-mail:alipinar@cse.uiuc.eduzParallel Computing Sciences Department,Sandia National Laboratories, Albuquerque, NM87185{1110, e-mail: bah@cs.sandia.gov 1



2after the send is complete. This requires each processor to simultaneously havespace for both its outgoing and its incoming data, which is not always possible.To overcome this problem, instead of sending all the data at once, we can send inphases. In each phase only a fraction of the data is migrated, so less memory isrequired to receive messages. After each phase, processors can free up the memory ofthe data they have sent. That memory is now available for the next communicationphase. We discuss e�cient algorithms to exchange messages in minimum number ofphases. We also discuss practical issues about implementation of these algorithmsto exchange data under memory constraints.2 Determining Communication PatternsThis section considers the problem of determining the communication pattern aftereach processor is assigned a portion of a problem. We assume that each processorcan determine what data it needs to receive, but does not know which processorowns that data. This problem can arise in various applications. As a concreteexample we will consider the very important case of matrix{vector multiplication,where the matrix is partitioned by rows. To perform matrix{vector multiplicationa processor can examine its rows, �nd all the columns for which it has a nonzeroand thus identify the components of the vector that it needs. But it does not knowwhich processors own these components. To perform the communication, eachprocessor has to know what it will receive from and what it will send to every otherprocessor. The purpose of this work is to design e�cient algorithms to determinethis communication pattern.A solution to this problem is useful for two reasons. First, the alternativeis to have the partitioner (or some other code) determine this information and tohave it included in the problem description. This alternative burdens the routineswhich set up the problem and adds additional complexity to software interfaces.By providing an e�cient parallel solution to this problem, we simplify the useof parallel computers. Second, dynamic load balancing redistributes tasks amongstprocessors, and so changes the communication pattern. Although the repartitioningtool could carry some data along with it which facilitates the determination of thenew pattern, a good solution to the general problem will obviate the partitioner ofthis responsibility.A simple solution to the problem of determining the communication patternis to have each processor exchange messages with all others. For instance, eachprocessor can create a list of the items it needs and the processors can pass theselists around a ring. When a processor receives a list it checks to see if it ownsthe requested items. Unfortunately, this all{to{all communication will be slowand not scalable. It is possible to employ higher-dimensional variants of the ringalgorithm like a 2D-torus algorithm where we �rst run the ring algorithm on subsetsof processors to aggregate lists, and then exchange aggregated lists with the otherprocessors. But these variants still perform all{to{all communication, only in asomewhat more e�cient way. They also require more memory on each processor.In this work, we propose the distributed directory algorithm, which is a rendezvous



3algorithm, which avoids excessive communication while still requiring only a smallamount of memory.2.1 Solution MethodsIn this section we will discuss the ring algorithm, its extensions to higher dimensions,and the directory algorithm we are proposing.The ring algorithm circulates queries among processors in a ring fashion. Ateach step i, a processor p(1) receives a list from processor p� 1(2) processes the list to determine what it has to send to p� i(3) sends the remainder of this list to processor p+ 1.For P processors, after P�1 steps, every processor will have seen every other query,and complete sending information { what each processor has to send to every otherprocessor { will be generated. We also need to generate receiving informationas well, which is easy to generate given the sending information. This algorithmrequires each processor to have memory to store two lists at a time.To decrease the number of steps, we can use higher-dimensional variants of thering algorithm. For instance, in 2D-torus algorithm, we can think of the processorsas being assigned to a 2D grid (even if the actual network topology is di�erent).We can run the ring algorithm on each row of the grid, aggregating lists. Theselarger lists are then circulated via a ring algorithm in each column of the grid. Thisrequires two ring algorithms of pP � 1 steps, however the lengths of queries inthe second step can be pP times larger, since it is a collection of queries from allprocessors in a row. We can further increase the dimensions, and go all way up tohypercube or even all-to-all-communication in one step to further trade increasedmessage size for fewer number of steps. In a k-dimensional torus algorithm eachprocessor,(1) Uses the ring algorithm to aggregate lists from processors that have the same kdimension as itself.(2) Process these lists to generate sending information.(3) Make a recursive call by replacing dimensions as k�1 and replacing its own listwith the collective list.In general, a k-dimensional torus algorithm requires k ring operations, where eachring has P 1=k processors, so the total number of steps is kP 1=k. Unfortunately,the �nal steps involve an aggregation of P (k�1)=k individual lists. Going to higherdimensions increases not only the memory requirement, but also sizes of messagesbeing transferred as well.To avoid moving excessive volumes of data, we propose using a distributeddirectory, which is a rendezvous algorithm. In this algorithm each processor will beresponsible for maintaining directory information for a subset of the components.The algorithm is presented in Figure 1.The algorithm assumes that each item has some unique identi�er associatedwith it which can be used to determine a directory processor which will be informedabout the item. This directory processor is the meeting place where the owner andthe requesters can rendezvous. Throughout the algorithm, processors work both



4 Directory Creation:As a client:Identify directory owner for all my items which might be queried.Submit these items to the directory.As a directory:Receive Submissions;Build a hash table of submitted lists.Query Resolution:As a client:Identify directory owner of items I need.Submit requests to the directory.As a directory:Receive queries.Check hash table to determine owners of requested items.Inform requesters of the results.As a client:Receive query results.Figure 1. The Distributed Directory Algorithmas clients, who have queries to be resolved, and directory servers that answer thequeries.The algorithm begins by creating a distributed data structure for answeringqueries. The directory is distributed across the same set of processors as thosethat want to �gure out the communication pattern. First, each processor identi�esits items that might be queried by another processor. For each such item, it de-termines which directory processor should own it via some kind of hash function.After sending its data to directory processors, each processor works as part of thedirectory, collecting submitted lists and organizing them into a data structure toanswer queries.With this directory, query resolution is straightforward. Each processor iden-ti�es the items it needs to know the owner of. For each such item, it determinesthe directory processor which owns it via the same hash function used to create thedirectory. As a directory processor, it then receives queries, and looks up the ownerof the requested data, and returns the answer to the requester.One of the critical issues for performance is to limit the size of the directory.We want to maintain the directory for only those items that will be queried. Forsymmetric matrices (or symmetric communication in general) rows that need to bequeried are those rows that require communication for themselves (equivalently, theboundary vertices on the graph of the matrix). Thus, only items that will actuallybe queried need be placed in the directory.If communication is not symmetric, it is not possible to determine the minimalset of items that need to be submitted to the directory. An easy solution would



5require processors to submit their entire domain to the directory. However, typicallyonly a very small portion of a processor's domain will be queried, so submitting thewhole domain will be ine�cient. Notice that the ring algorithm and its variantsdo not su�er from this problem, and they can be adopted without modi�cations.However, in practice unsymmetric matrices often have a lot of symmetry in them.We can exploit this observation to reduce the size of the problem by �rst using thedirectory algorithm. The directory algorithm will resolve queries associated with thesymmetric matrix structure communication. We can use a ring{variant algorithmto resolve any remaining queries (i.e., items with unsymmetric communication). Asthe experiments in the next section reveal, the time to run the directory algorithmis much smaller than all ring variants. So we can a�ord a preprocessing step thatreduces the problem size to improve the e�ciency of the ring algorithm.2.2 Experimental ResultsWe have tested our algorithms for determining communication pattern for the oceanmatrix, a symmetric matrix of dimension 143,437 with 962,623 nonzeros. We ranour experiments on the ASCI Red parallel computer at Sandia National Labs. Ourresults are presented in Fig. 2 for 4, 16, 64, 256 and 1024 processors. The matrix waspartitioned using the multilevel algorithm in Chaco. For these experiments the items(matrix rows) had a global numbering which we used as the identi�er. For a hashfunction, we simply assigned the �rst N=P items to the �rst directory processor.The number of the rows of the matrix contains some implicit locality structurewhich this hash function exploits. Thus, a processor probably only communicateswith a subset of directory processors. A random hash function might improve loadbalance in the directory, but it would likely increase the number of messages involvedin constructing and querying the directory.

0

20

40

60

80

100

120

140

160

10 100 1000

T
im

e
 in

 m
ili

se
co

n
d

s

Number of processors

’directory’
’ring’

’2d-torus’
’3d-torus’
’4d-torus’

Figure 2. Performance of Di�erent AlgorithmsAs expected, the directory algorithm scales well with increased number ofprocessors whereas performance of the ring algorithm deteriorates. The 2D algo-



6rithm performs better than the 1D ring, but still is not scalable. Further increasingthe dimensions of the ring algorithm slightly improves performance, but the gainthat can be achieved by increasing number of processors is limited, as proved bythe similarity between the performances of the 3D and 4D versions for 256 and1024 processors. Recall that these ring variants also require more space than thedistributed directory.3 Communication with Memory ConstraintsAlthough a number of algorithms and software tools have been developed to repar-tition work among processors (see, for example, [1, 3] and references therein), themechanics of actually moving large amounts of data has received much less atten-tion. If su�cient memory is available, the simplest way to transmit the data is quitee�ective. Each processor can execute the following steps.(1) Allocate space for my incoming data(2) Post an asynchronous receive for my incoming data(3) Barrier(4) Send all my outgoing data(5) Free up space consumed by my outgoing data(6) Wait for all my incoming data to arriveThe barrier in step (3) ensures that no messages arrive until the processor is readyto receive them, so no bu�ering is needed.This protocol requires a processor to have su�cient memory to simultaneouslyhold both the outgoing and the incoming data since incoming messages can arrivebefore outgoing data is freed. An alternative way to view this issue is that fora period of time the data being transferred consumes space on both the sendingand receiving processors. A protocol that alleviates this problem is desirable forthree reasons. First, since many scienti�c calculations are memory limited, reserv-ing space for this communication operation limits the size of the calculations whichcan be performed. Second, the amount of memory required by this protocol is un-predictable, so setting aside a conservative amount of space is likely to be wasteful.And third, a general purpose tool for dynamic load balancing should be robust inthe presence of limited memory. It was the construction of just such a tool whichinspired our interest in this problem [2].To address these problems, we propose a simple modi�cation to the abovescheme. Instead of sending all of the data at once, we will send it in phases. Aftereach phase, processors can free up the memory of the data they have sent. Thatmemory is now available for the next communication phase. Since each phase canbe expensive, it is important to limit the total number of phases.We have studied the combinatorial aspects of this problem in our earlierwork [4]. We proved that the problem of �nding a minimum-phase schedule is NP-Complete, and presented e�cient algorithms with tight bounds on performance.First, we will briey explain our solution techniques below. Then, we will addressmore practical aspects of this problem.



73.1 Combinatorial Techniques for Minimum-phase RemappingWe have proposed two algorithms. The �rst algorithm depends on continuous relax-ation, which relaxes the constraint that the amount of data transferred in a phasemust be an integer. The second algorithm depends on parking, which tries to uti-lize memory that would otherwise be wasted. Both algorithms have tight boundson their performance. Let T be the total volume of data to be moved, and M bethe total available memory in the parallel machine. Note that M does not changebetween phases, even though its distribution might change. The minimum numberof phases is d TM e. We will use this lower bound to give bounds on the performancesof our algorithms.Continuous RelaxationThe approximation algorithm to be described in this section relaxes integral con-straints on the volume of data transfers to allow continuous values. Naturally, thevolume of transfer between two processors in a phase must be an integer. But in-teger solutions near the continuous ones can be used as heuristics. Note that theunit of data transfer is only a byte, whereas the volume of data being transferredis often in the order of megabytes. So, conversion from a continuous solution toan integer solution will often be a small perturbation. However, bad cases for thisheuristic exist as discussed in [4].The essence of the algorithm is to divide each message into L = d TM e equalpieces, and send one piece at each phase. Clearly, such a schedule does not nec-essarily satisfy memory constraints. To make this idea work, we use pre{ andpost{processing phases to ensure feasibility. In the pre-processing phase, receiveassignments are redistributed to equalize the volumes of incoming and outgoingdata on each processor. This ensures that each processor will have enough spacefor the next phase to receive, because the volume it needs is exactly equal to howmuch it ships out at the current phase. Each processor also needs to have enoughspace to receive for the �rst phase. For this purpose we reassign equal amounts ofsend and receive assignments to open up enough space at each processor for the�rst phase. The two steps can be merged into one phase, since we are only tryingto balance numbers, thus send and receive operations can cancel each other. In thenext L phases, we transfer 1=L-th of each data transfer at each phase. We also needa post-processing phase to make up for the reassigned receives in the �rst phase.Altogether this algorithm gives a solution with d TM e+ 2 phases for the continuousapproximation to the problem. A more detailed description and analysis of thisalgorithm can be found in [4].Greedy AlgorithmsWe will describe the basics of a family of e�cient algorithms that provide solutionsin which the number of phases is at most 1.5 times that of an optimal solution.The algorithm is motivated by some simple observations. As discussed above, theminimum number of phases in a solution is d TM e. This bound can only be achievedif available memory is used to receive messages at each phase. So free memory is



8wasted if it resides on a processor that has no data to receive. Our algorithm worksby redistributing free memory to processors that can use it. Equivalently, data isparked on a processor with free memory it can't use, thereby freeing up memory onprocessors which can use it. We will only park data that needs to be transferredeventually.Parking aims to utilize memory that would otherwise be wasted. Consider aprocessor that received all its data and still has available memory. This memorycannot be utilized in subsequent phases, decreasing the total memory which is us-able for communication, thus potentially increasing the number of phases. Instead,another processor can temporarily move some of its data to this processor to freeup space for messages. An example is illustrated in Fig. 3. In this simple example,the top two processors want to exchange 100 units of data, but each has only oneunit of available memory. A simplistic approach will require 100 phases. However,the third processor has 100 units of free memory. By parking data on this third pro-cessor (i.e. transferring free memory to another processor), the number of phasescan be reduced to three.
+100

+1

+1

100100

Phase 0 Phase 1 Phase 2

100 10
0

100

Time Figure 3. Example of the utility of parking.In our algorithm, we merely store data in a parking space, and then forwardit to its correct destination, when the destination processor has available memory.Note that it is inconsequential which processor owns the parked data. In otherwords, parking spaces are indistinguishable. What potentially e�ects performanceis which processors shunt their data to parking space.Below, we describe an algorithm that obtains a solution with at most 1.5times the optimal number of phases. The algorithm is quite generic and allows fora number of possible enhancements.Basics of a greedy 32 -approximation algorithm:� A processor receives as much data as it can in each phase (i.e., if a processorhas available memory at the end of a phase then this processor does not haveany more data to receive).� If the transfer request cannot be completed in the next phase, then park asmuch data as possible (i.e, park the minimum of the total parkable data andthe total available parking space).



9The second condition in this algorithm guarantees that each parking operationis followed by a direct transfer from the sender to receiver. This means at mosthalf of the data being transferred can go through parking, thus total volume of datatransfer cannot exceed 3T2 . Also note that this algorithm uses all available memoryin all phases with the exception of last two phases. These two observations imply anupper bound of 3T2M +1 phases, where the +1 term is due to not using all availablememory in the last two phases. A formal proof of this argument can be found in [4].Note that many details about the algorithm are unspeci�ed: If I have moreincoming data than free memory, which messages should I receive in the currentphase? If several processors want to park data, but limited parking spaces areavailable, which should succeed? Intelligent answers to these questions could be usedto devise algorithms with better practical (or perhaps theoretical) performance.3.2 Practical ConsiderationsOur theoretical work concentrated on the total volume of available memory, ignor-ing how the available memory, and data to be sent reside in the memory. Ourtheoretical model can be applied directly if the available memory and the data tobe sent are stored in a contiguous block of memory. In this case, all our results areexactly applicable without any caveats. First, we don't need to construct messagesseparately, because they are already in a contiguous block of memory, and ready tobe sent. Second, since the available memory is contiguous, we can chunk it up intopieces as we like. If this was not true (memory was available in discontinuous blocksof memory), we might have to receive messages in smaller pieces. However, even ifdata and memory are contiguous to start a phase, at the end of a phase the somedata will have been freed, so the available memory will no longer be contiguous.We can address this compacting the messages, shifting to have a continuous blockof available memory. Proceeding this way, we will replace the data being sent bythe data being received using the same block of memory.In practice, outgoing messages and available memory are rarely available in acontiguous block, and organizing data for this purpose might be a challenging prob-lem by itself. However, if data structures are designed to store data on a contiguousarray, then a simple in-place permutation of the data is su�cient to achieve the de-sired arrangement of the data. As will be discussed below, this organization enablesa more e�cient and more aggressive operation while processors are exchanging theirdata. An arbitrary data structure will bring its burdens. First, we will have tobu�er messages to be sent (and received). This will decrease e�ciency, since we arealready short of memory. Second, available memory is likely to be scattered as smallblocks in the memory. This will force the use of smaller messages, and availablememory in subsequent phases will be unpredictable (pieces might be too small tobe utilized), disabling the use of algorithms like continuous relaxation that rely onpre-scheduling the messages. In Fig. 4 we sketch an algorithm which is robust underthese challenges. In this algorithm, the neighbor set of a processor refers to thoseprocessors it wishes to exchange data with.Notice that in Fig. 4 parking is not included. Parking by its de�nition requires



10 While data exchange is not complete doDetermine my send bu�er size and my priorityExchange bu�er size and priority information with neighborsWhile there is available memory and data to receive doChoose a sender s depending on its priorityx min(bu�er size of s, remaining volume to be received from s)Try to allocate up to x units of memoryLet y be the volume of memory allocatedPost asynchronous receiveInform s that it can send y units.for each sending assignment receivedConstruct message on the send bu�er and send.Free up the memory for data sent.Figure 4. Template of a robust algorithm for memory-constrained inter-processor communicationa global operation among all processors, because any processor can park to anyother processor, whereas data exchanges are localized, since each processor is likelyto communicate with only its neighbors. Without parking, processors can exchangemessages without any synchronization, but when we include parking, we have touse a global operation at each phase which slows down the overall process. Besides,in our experiments only a very small percentage of data is being parked, and thegain to due fewer number of phases is usually not worth the cost due to globaloperations in each phase. However, it is important to keep parking as a safeguardagainst cases where memory constraints are extremely tight.4 ConclusionWe addressed two problems associated with redistributing data among processors.The �rst problem is that of determining the inter-processor communication patternwhen each processor knows which components it wants to receive, but does notknow which processor owns them. In a simple solution to this problem, proces-sors will exchange messages in a ring fashion, however this will require all-to-allcommunication and will be unscalable. We described a rendezvous algorithm foran e�cient solution for this problem, and our experiments veri�ed its e�ectiveness.The second problem is that of actually migrating data in the case of limited mem-ory. A processor can deallocate memory for outgoing data only after its send iscomplete. This requires each processor to have su�cient space both for its outgo-ing and incoming data, which is not always possible. We proposed a protocol toalleviate this problem and discussed implementation details.Both of these problems arise from our collaborative e�orts to build general



11purpose libraries to support complicated parallel applications. Both of the featuresdescribed here are now being added into Zoltan, a public{domain dynamic loadbalancing tool [2]. Our distributed directory algorithm is also being added to theAztec linear solver package [5].AcknowledgementsWe are indebted to Mike Heroux for introducing us to the problem of determiningcommunication patterns.Bibliography[1] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors,J. Parallel Distrib. Comput., 7 (1989), pp. 279{301.[2] K. D. Devine, B. A. Hendrickson, E. G. Boman, M. M. St.John, andC. Vaughan, Zoltan: A dynamic load-balancing library for parallel applica-tions { user's guide, Tech. Rep. SAND99-1377, Sandia National Laboratories,Albuquerque, NM, 1999. http://www.cs.sandia.gov/Zoltan/.[3] B. Hendrickson and K. Devine, Dynamic load balancing in computationalmechanics, Comp. Meth. Appl. Mech. Eng., 184:2{4 (2000), pp. 485{500. In-vited paper.[4] A. P�nar and B. Hendrickson, Interprocessor communication with memoryconstraints, Proc. of ACM Symp. Parallel Algorithms and Architectures, 2000.[5] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid,O�cial Aztec user's guide: Version 2.1, Tech. Rep. SAND99-8801, SandiaNational Labs, 1999. http://www.cs.sandia.gov/CRF/aztec1.html.


